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1. CENSORSHIP IN WESTERN SOCIETIES

We all heard about censorship in many non-Western societies.

Censorship in the West is not so uncommon.

Australia: The Australian Communications Minister Helen Coonan

has suggested to censor an internet & TV program “Big Brother”.

This made news in, e.g.

Canada:

http://www.cbc.ca/story/arts/national/2006/07/05/big-brother.html

UK: news.bbc.co.uk/2/hi/entertainment/5151248.stm

Note: Accordingly to www.censorwatch.co.uk/cw0606.htm the

following books are censored in Australia:

• Defence of the Muslim Lands

• Join the Caravan
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Belgium: the Information Minister Peter Vanvelthoven is looking into:

censoring websites with illegal content or with illegal services

(translated from the official Belgian memorandum at

http://presscenter.org/archive/20060623/64e4b6b15afc76fdf9f1db8c3f917b32/?lang=nl

or at least to:

inform customers that they entered a black listed site

Critics remember that before 1966 it was hard in small Belgian

villages to buy books that were on the Vatican “Index Librorum

Prohibitorum” blacklist.

France: Hitler’s “Mein Kampf” is censored in France and some other

countries (e.g. Germany).

c©Yvo Desmedt 4

http://presscenter.org/archive/20060623/64e4b6b15afc76fdf9f1db8c3f917b32/?lang=nl


USA: the Rolling Stones performance during the 2006 superbowl on

5 February 2006 was partially censored.

In other countries monitoring measures are introduced. For

example, in the UK the government has the right to know:

who you phoned, who phoned you, your mobile phone location,

email addresses contacted and websites visited.

Texts describing in details the construction of atomic bombs, or

other classified information, are also censored.

Whether censorship is a benefit to mankind or not, is a

non-scientific topic, and therefore not the focus of the presentation.

In this talk we discuss methods that can be used to censor

networks.
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2. TRADITIONAL NETWORKING MODEL

The classical results:

If an adversary can destroy t nodes, then t+ 1-vertex disjoint paths

are needed and sufficient to communicate from node A to node B.

If any two non-destroyed nodes want to communicate, it is

necessary and sufficient that the graph must be t+ 1 connected.
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A polynomial time algorithm exists to find:

• the connectivity of the graph

• a separator, i.e. for any sender A and receiver B, one can find a

subset of nodes such that A and B are disconnected.

In our context this means that anybody who knows the network can

easily find the separator.

Disadvantage: as easy for a limited adversary to perform a denial of

service as for the authorities to censor the internet!

Goal: possible for authorities to censor the internet, but hard for

cyber terrorist (or hacker) to disrupt.
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3. COLOR ADVERSARY STRUCTURE

In the traditional model the adversary can control at most t nodes.

Accordingly to this model:

attacking t+ 1 machines running the same platform is hard, but

attacking t machines running different platforms is easy!

This model is clearly not realistic. A weakness of one

router/computer can easily be exploited on another one if it runs the

same platform. Indeed, using viruses and worms one can replicate

an attack!

Burmester-Desmedt (2004) proposed the t-color adversary

structure. Vertices are given colors. t colors can be corrupted. It
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allows to model routers that run the same platform, i.e. have the

same weakness, to be assigned the same color.

Color adversary structure is interesting to understand

counter-intuitive arguments: i.e.: color separable is not linked to

vertex disjoint paths.
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Definition 1. LetG(V,E) be a directed graph,A,B be nodes in

G(V,E), andZC,t be at-color adversary structure onV \ {A,B}, where

C is the set of colors.

• A,B are calledZC,t-separablein G, if there is a setZ of nodes of at most

t different colors such that all paths fromA toB go through at least one

node inZ. We say thatZ separatesA andB.

• A,B are called(ZC,t + 1)-connected if they are notZC,t-separable inG.
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4. COMPUTATIONAL COMPLEXITY

Deciding whether a vertex colored graph with C the set of colors, is

ZC,t + 1-connected is co-NP-complete.

Proof We demonstrate the complementary problem is NP-complete.

The reduction is from the Vertex Cover problem.

INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V |.

QUESTION: Is there a vertex cover of size k or less for G, that is, a

subset V ′ ⊆ V such that |V ′| ≤ k and, for each edge (u, v) ∈ E, at

least one of u and v belongs to V ′?

We now construct a network between A and B. Assume

E = {e1, e2, . . . , em−1, em}. Let us define:
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• E1 = {e(1,1), e(2,1), . . . , e(m−1,1), e(m,1)} a set of nodes, and

• similarly E2

• a bijection f1 from E to E1 such that f1(ei) = e(i,1), and

• similarly f2 maps ei into e(i,2).

We now construct the following new graph Gc:
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We now color the nodes in E1 as following. Let C = V . Let

e(i,1) ∈ E1. Let (vj, vl) = f−1
1 (e(i,1)), where j < l. Color e(i,1) using

color vj. Similar for coloring the nodes in E2, but we use vl.

The graph G has a vertex cover of size k if and only if in Gc there

are k colors which will disconnect A from B.
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5. SECURE CENSORING

If the security model is an ordinary threshold one, then anybody

knows who can/can not censor. If the color adversary structure is

used, then the problem whether it is (at most) k-color connected, is

NP-complete. So, the secret is a separator Z of at most k colors.

Why should this remain secret?

Advantage: it may be hard for the limited adversary to find the

secret.

So, the question becomes:

Can the designer prove in zero-knowledge the existence of a

k-color separator?
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Designing an efficient zero-knowledge proof seems rather trivial.

Here an idea:

Step 1 The prover permutes all the vertices, and permute all the

colors and commits to these.

Step 2 The verifier asks a binary question.

Step 3 If the question is 0, then the prover opens all commitments,

else he reveals a set V ′ that separates A and B in this

isomomorphic graph.

Step 4 The verifier, in the first case, checks the commitment. In the

else case, the verifier checks that the number of colors in V ′

is at most k and checks V ′ indeed separates.

Unfortunately, above protocol is not zero-knowledge. Indeed, it
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leaks the size of V ′, which it should not. The knowledge of the size

of V ′ may help the verifier to find the k colors. Moreover, it also

leaks the multiplicity of each color, etc.
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To solve this problem, we prove the following lemma.

Lemma 1. Let Gc = Gc(V,E,C, f) be a vertex-colored graph,

where C is the set of colors and f : V → C. Let C ′ ⊆ C be such that

|C ′| = k and V ′ = {v′i : f(v′i) ∈ C ′} separate A and B. Let k′ be the

maximum number of vertex disjoint paths in (V,E) ignoring the

colors. Let P1, P2, . . . , Pk′ be these vertex disjoint paths. We then

have that for each of these path Pi: Pi ∩ V ′ 6= ∅. So, on each path Pi
there exists a node of a color in C ′.

Proof: The proof follows trivially by contradiction. 2
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Zero-Knowledge interactive proof
Setting

Let G = G(V,E,C, f) be a vertex-colored graph and m = |C|. For

simplicity we assume C = (1, 2, . . . ,m). Let C ′ and V ′ be as before.

Precomputation

First the verifier and the prover (separetely) compute:

• k′, i.e. the maximum number of vertex disjoint paths ignoring colors.

• k′ vertex disjoint paths P1,P1, P2, . . . , Pk′.

This can be done in polynomial time. So both prover and verifier

obtain the same k′ vertex disjoint paths. Let li be the length of the

path Pi minus one, and let us call the vertices, except A and B, on
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this path v(i,1), v(i,2),. . . ,v(i,li).

Protocol

They repeat the following steps n times, where n is specified later.

The randomness in each run is chosen independently.

Step 1 The prover chooses a permutation π of the colors, so

π ∈R sym({1, . . . ,m}). For each of the aforementioned paths

Pi:

• the prover chooses a permutation ρi ∈R sym({1, . . . , li}),
permutes the vertices (ignoring A and B) on the path Pi
and sends the verifier a commitment for the permuted

coloring of the permuted vertices, so formally, sends:

E(i,j) = commit(π(f(v(i,ρi(j)))), rij) for j = 1, . . . , li,
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where rij is chosen independently uniformly random, and

• for each ch ∈ C ′ (h = 1, . . . , k) sends

E′h = commit(π(ch), r′h), where r′h is chosen independently

uniformly random.

Step 2 The verifier flips a coin q1 and also chooses randomly a value

q2 ∈R {1, . . . , k′} and sends the prover the query (q1, q2).
Step 3 If q1 = 0, then the prover reveals π, all ρi and opens all

commitments of the type E(i,j) (Note the prover does not

open E′h.),

else the prover decommits one (of the) permuted colors of

the vertex set: Pq2 ∩ V ′. This is done by opening:

• exactly one E(q2,j′), and

• exactly one E′h
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such that f(v(q2,ρq2(j′))) = ch. (Note π is not opened, and

neither is ρq2).

Step 4 If q1 = 0, then the verifier verifies that π and all ρi are

permutations and all the decommitted values,

else the verifier checks that the two opened commitments

and checks that they correspond to the same color.

c©Yvo Desmedt 22



Theorem 1. When n is chosen such that ((k′ − 1)/k′)n is

negligible, the protocol is a computational zero-knowledge

interactive proof system for the color separable problem assuming

that the commitment function commit is secure.
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6. CONCLUSIONS AND OPEN PROBLEMS

Open problem: how to efficiently generate hard instances with a

trapdoor. This means:

How to generate a colored graph such that the provider can

demonstrate to the authorities the existence of a t-color separator,

while at the same time it is hard for the limited adversary to find

these t colors.

Conclusion: we demonstrated that it may be hard for a limited
adversary to perform a denial of service, while the provider can
demonstrate to the authorities that censorship is possible.
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