Modelling and analysing network security policies in a given vulnerability setting

Roland Rieke

Fraunhofer-Institut für Sichere Informationstechnologie Rheinstrasse 75, D-64295 Darmstadt, Germany E-Mail: rieke@sit.fraunhofer.de http://private.sit.fraunhofer.de/~rol

CRITIS'06

Challenge: Protect Critical Information Infrastructures

Process to guide the systematic protection (U.S. Fire Admin.)

- identify critical infrastructures essential for mission accomplishment
- determine the threats against those infrastructures
- analyse the vulnerabilities of threatened infrastructures
- assess the risks of degradation/loss of a critical infrastructure
- apply countermeasures where risk is unacceptable

Approach: Support this analytical Process

- supply a formal framework to specify critical (ICT) network infrastructures and threats against them
- provide tool based methods for a systematic evaluation
- assist with finally determining exactly what really needs protection & which strategy and means to apply

Example Scenario

Modelling critical (ICT) network infrastructures

Asset Inventory

hosts products, services, vulnerabilites trust relation between hosts topology of network IDS intrusion detection info

Asset Prioritisation criticality/worth of component used for cost/benefit evaluations

Policy Definition

Organisation Based Access Control (Or-BAC) model

roles represent subjects (hosts)

activities represent actions (service, e.g. ssh)

views represent objects (target)

permissions:

role \times activity \times view

Modelling Vulnerabilities and Exploits

Modelling Vulnerabilities

- identifier (cf. Common Vulnerabilities and Exposures (CVE/CAN), MITRE Corporation)
- preconditions (credentials, ...)
- range and impact type (cf. National Institute of Standards and Technology (NIST))
- severity (reflects the probability of exploitation) (cf. Common Vulnerability Scoring System (CVSS) or US-CERT)

Modelling Exploits

- vulnerability
- cost
- impact
- stealth

Modelling Attackers

Attacker strategy

 preprocessing of attacker profile (known exploits, hosts, credentials)

e.g. assume the attacker uses only exploits for vulnerabilities with a severity above a given threshold

- select known exploit
- select source and target
- apply exploit

Note: The model allows multiple attackers (role based)

Attack Graph Computation

Exploit Template

CAN_2003_0693_ssh_exploit

- Bind: attack from host S to host T $(S, T, plvl_S, plvl_T)$
 - E1: intruder knows exploit 'CAN_2003_0693_ssh_exploit' ∈ Attacker_known_exploits_state,
 - E2: selection of source and target host $(S, p|v|_S) \in Attacker_p|v|_state, rank(p|v|_S) \ge rank('user'),$ $(T, p|v|_T) \in Attacker_p|v|_state,$
 - E3: is target vulnerable from source $CAN_2003_0693(S, T, plvl_T) =' true',$
 - E4: attacker gets all knowledge of host Tget_knowledge(T) =' true',
 - E5: intrusion detection check ids_check('CAN_2003_0693_ssh_exploit', S, T) =' true',
 - E6: assign cost benefit values cost_benefit('CAN_2003_0693_ssh_exploit', T,' root') =' true'
 - E7: no additional impact in this example

Vulnerability Template

E3: is target T vulnerable from source S by CAN_2003_0693 ?

- V1: is target configured vulnerable ? $(T,' CAN_{2003_{0}693'}) \in host_vulnerability_state,$
- V2: is target currently running sshd ? $(T, (('sshd', port), plvl_service)) \in host_service_state,$
- V3: is target reachable from source on port ssh (policy permission) ?
 Pol :=
 reachable((S, T, port), role_view_activity_seq(), role_def_seq()),
 Pol =::,
- $\begin{array}{ll} \mathsf{V4:} & \mathsf{effects \ for \ attacker \ (get \ sshd \ privileges \ on \ target)} \\ & (T, plvl_T) \hookleftarrow Attacker_plvl_state, \\ & (T, max_access(plvl_service, plvl_T)) \hookrightarrow Attacker_plvl_state, \end{array}$
- V5: direct impact (target is no longer running sshd) $(T, (('sshd', port), plvl_service)) \leftrightarrow host_service_state$

Attack graph of example scenario (small section)

Attack Graph Analysis

Abstract Representations

Abstract Representations

Step 2 - Compute the Abstract Representation root (root) (root) (unspecific) (unspecific) user unspecific)-A-13 - (root)user) (root unspecific (root) user (root (unspecific) nspecifi specific unspecific)-(unspecific (user) (unspecific) user (unspecific) (root) (user í root (unspecific (root) (root) (user 178 states and 1309 edges \rightarrow 20 states and 37 edges

Abstract Representations

Step 4 - Adapt/Optimise the System Configuration

visualise impact of policy changes in the abstract representation

Using Predicates to define Abstractions

Step 1 - The mapping ($T = db_server$) matches only those transitions that model direct attacks to the target host db_server

Using Predicates to define Abstractions

Step 2 - The abstract Representation proves that:

- in the current policy configuration attacks to the *db_server* are possible,
- those attacks are based on exploits of the vulnerability CAN_2002_0649, and,
- they are utilising the policy rule (*intern_hosts, any_role, net*).

Step 4 - Adapt/Optimise the System Configuration

To prevent this attack,

- uninstall the product that is hurt by this vulnerability, or,
- restrict the internal hosts in their possible actions by replacing the above policy with a more restrictive one.

Apply Approach to Networked Infrastructures

Support Critical Networked Infrastructure Protection model a networked infrastructure system & threats including specifications of mutual dependencies analyse interplay of component vulnerabilities & threats reveal complex threat combinations (malfunctions, accidents, attacks) & raise risk awareness support systematic evaluation of possible solutions aim at optimising security & protection with given resources

Adaptation to changing Context

- Monitoring system behaviour and intrusion attempts
- Complex event processing
- Situated risk evaluation
- Policy-based automated threat response
- Impact minimisation

